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Abstract

We investigate numerical algorithms for use in air pollution models. The emphasis is on the time integration
aspects in connection with advection, vertical turbulent diffusion and stiff chemistry. The time integration
scheme considered is a second-order implicit—explicit BDF scheme which handles advection explicitly and
vertical turbulent diffusion and chemistry implicitly. The investigation is divided into three parts. In the first
part we propose a Gauss-Seidel technique for the implicit solution of the chemistry and vertical turbulent
diffusion. In the second part we discuss stability properties of the implicit-explicit BDF scheme, assuming the
third-order upwind biased finite difference discretization of the advection operator. In the third part we apply
the implicit-explicit scheme to a 3D test model and discuss vectorization and parallelization aspects.

Keywords: Long range transport air pollution models; Time-dependent advection-diffusion reaction; Numerical methods;
Vectorization; Parallelization

1. Introduction

Air pollution models take into account many physical processes. From the numerical point of view,
important processes are the chemical transformations, advective transport, caused by horizontal wind
mainly, and vertical transport caused by turbulent diffusion. This paper is devoted to a numerical
study of a 3D model of the form

ap . a ap)
— +d =—\(K—=|]+r(, (N
2+ diviup) = 55 (K32 ) +1(0.0)
in spherical coordinates, where p = p(A, ¢,0,1) is a vector in R” of m concentration values,
u = ue, + vey is the horizontal velocity vector with e, and ey the unit vectors on the sphere in
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the longitude (A) and the latitude (¢) directions, respectively, and K is a scalar turbulent diffusion
coefficient in the vertical direction (o). The horizontal divergence operator is given by, [18],

1
acos¢

] d .
9 2 (2
((M(up) + a¢(vpcosri>)>,

where « is the radius of the earth. Vertical advection and horizontal diffusion can be added withou
essential numerical difficulties. The vector function r(7, p) defining the chemical transformations
emission and dry deposition, has the special form

div(up) =

r(t, p) = P(t,p) — L(z, p)p, (3

where P (t, p) is the vector of production terms and L(z, p) p the vector of loss terms with L(z, p
a diagonal matrix. For many species, the reciprocal of their entry in L is a good approximation ©
the physical time constant or characteristic reaction time. In virtually all applications, the range ©
reaction times is so large that we have to face the difficulty of stiffness [8].

Our numerical study considers a scheme which is derived employing the method of lines (MOL.)
The integration method is based on a second-order implicit-explicit BDF formula which handle
advection explicitly, and chemistry and vertical diffusion implicitly. The numerical study focuses ©
three points. The first is taken up in Section 2 and concerns the solution of chemistry and verti
cal diffusion. Normally, for stability reasons, stiffness impedes the use of some form of Newto
iteration for computing the implicitly defined solutions. In [13,14] we have shown, for differer
box models and using the implicit second-order BDF formula, that for atmospheric chemistry prot
lems the simpler Gauss—Seidel iteration can be used with greater or competitive efficiency. In fac
the Gauss-Seidel method used is truly explicit and is related to simple, explicit quasi-steady-stat
approximation (QSSA) schemes to which it compares very favorably also [14]. An additional ac
vantage is the much lower memory demand compared to a Newton method. Here we show that th
Gauss-Seidel iteration from [13,14] can be effectively extended to the coupled chemistry diffusio
case.

In Section 3, the second point is addressed, namely the stability of the implicit-explicit MO:.
scheme, given that the advection operator is discretized by the mass-conservative, flux-limited finit
difference scheme proposed in [7]. This finite difference scheme is based on the third-order upwin
biased discretization (the «x = 1/3 scheme in the terminology of van Leer) and has been found to t
very suitable for our application (see also [1,3]). We give results of a Fourier-von Neumann analys:
which show that the explicit, two-step advection scheme yields stability limits sufficiently large fc
the application of the complete implicit-explicit scheme. Because the use of the Gauss-Seidel methc
renders the diffusion chemistry computation explicit also, except for tridiagonal matrix inversion
the combined implicit-explicit approach results in an efficient, almost explicit, process for models ¢
type (1).

Section 4 deals with the third point, namely the accuracy and efficiency performance of the implicit
explicit MOL scheme when applied to a 3D test problem. Efficiency is of utmost importance ar
since we currently use a Cray C98/4256 (4 vector processors, 256 Mw shared memory), attentic

will be paid to vectorization and parallelization of the advection and diffusion chemistry computatic
in 3D applications.
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2. The Gauss—Seidel process

First consider the 1D diffusion chemistry problem

dp 0 ap
7 = 70 (K3U>+r(t,9), t>1,0<0o<oy, (4)

supplemented with the initial condition p(o, #) = p°(0) and the boundary conditions
dap _ ap
(Kaa') 0,1 =0, (K%> (oy,1) =0. (5)

2.1. The discretization

The vertical turbulent diffusion term is discretized on the nonuniform cell-centered grid
Oy ={opo = %AO'I, Oy =01 + %(Aak—l +Aoy), 2< k< Ny}, (6)
such that the following ODE system is obtained. For 1 < k < N,

d
g} = £i(t,0) 2di(t,0) +r(tic). 1> o, cilte) = p2(0), (7)

where c(t) is the complete grid function on &2y, ¢, (1) = p(oy,t) and

Cr+1 — Ck _ — Cp— Cr
A0'k+]+A0'k k AU’k“l"AO'k_]
AO';H,] + 2A0’k -+ AO'k_l

8K;

di(1,¢) = , 1<k<N,, (3,
with Kki = K(t,(or+ 04x1) /2) and Aog = Aoy, Aoy, 41 = Aoy,. Note that K is evaluated halfway
between the cell centers, rather than at the cell boundaries, to obtain a consistent discretization of
(at least) order one. The boundary conditions are incorporated by putting K, = 0 for kK = 1 and
K =0 for k = N,. Also note that ¢,(z) is a vector in R and that the diffusion operator introduces
no coupling between different species. For each of the species, the semi-discrete diffusion operator is
equal and represented by the same tridiagonal matrix. The species are coupled through the chemistry
term r (1, cy).
For the time integration, we consider the two-step BDF formula in variable step form

CZ+I=C]?+‘)’Tfk(tn+hcn+l)s 1 gnga, n>1a (9)
where ¢} ~ ¢,(t,) and
Ci=(0+q*G—qca™)/(1+29), (10)

T=ty—tny=(1+¢)/(1+2q) and g = (ty41 —t,) /(£ — ta-1). The initial vector ¢ = ¢i(ty), and
¢} is assumed to be defined by the first-order implicit Euler rule. This combination yields second-
order accurate time stepping which for atmospheric transport applications is sufficient in view of the
modest accuracy requirement. Generally, a relative accuracy better than 1% is superfluous.
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2.2. The Gauss-Seidel iteration

Suppressing the temporal index n + 1 and 1, for notational convenience, we write (9) as
o= Cy +yrdi(c) +yrP(ci) —yrL(cder, 1 < k<N, (11)
Let c{”’ be the jth component of ¢, and introduce, for j = 1,...,m, the following vectors on £:
=, T, PV =[PP, ... PP (ex)],
and, similarly,
= [CY, .. CYTT
The vector ¢ contains all vectors ¢, j=1, ..., m. Then, introducing the diagonal matrices
LY (¢) =diag(LY(¢)), ..., LY (cn,))s j=1,...,m, (12)
we may write
¢ = CY +yrAcY +yrPYP () —yrLY (e)e, j=1,...,m, (13)

where A is the tridiagonal (diffusion) matrix of order N, (cf. (8)). Equivalently, we have
. . -1 . .
¢ = (I—yTA—f-yTL“)(c)) (C"’ +y7'P“)(c)), j=1,....m, (14)

since the inverse of the (diagonally dominant) tridiagonal matrix I —y7A +y7L"Y (¢) always exists.
The Gauss-Seidel iteration for approximating ¢, 1 < j < m, is carried out on equation (14) and
consists of the following calculations. Let ¢(;; denote the ith iterate for ¢. Then, at step n,
(1) Initial estimation: i = 0, ¢ := max(0, " + q(c" — c"™')).
(2) Compute, in the order j=1,...,m:
(@)L (ci)), PV (ea).

(b)LU-decompose I — y7A +y7LY (¢(3)). (15)
(c)Backsolve in (14) for c{2),.

— (oD ) (+1)
(d)Update CK,] o (C[H'l]’ ey Ch{_{_”, C[{] 90 ey C%g)).

(3) Seti:=i+ 1. If more iterations are required, then go to (2).

Hence the approximations are corrected specieswise and simultaneously over the grid, such that the
diffusion term is treated implicitly. This requires the tridiagonal matrix calculations (2)(b), (¢)
any time a species is corrected. Thus, except for the tridiagonal matrix calculations, the Gauss-
Seidel process is truly explicit. No Jacobian matrices for the chemistry system are computed and no
additional storage is required. If there were no diffusion, then this process is completely identical to
that used for the box models in [13,14]. On the other hand, without chemistry the diffusion is treated
implicitly in the usual way. This means that method (15) differs from the well-known classical
nonlinear Gauss~Seidel method since this classical method does not distinguish between the diffusion
and reaction terms and would be applied directly to (11).
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2.3. Numerical illustration

This section presents numerical results for a large, real life test problem obtained with a code based
on (9). For the approximate solution of the implicit relations, the Gauss-Seidel (GS) iteration (15)
and modified Newton (MN) iteration have been implemented. The stepsize strategy is similar to that
in [13,14] and many stiff ODE codes and identical for the GS and MN iterations. To save space
we omit details here. We have not implemented an iteration strategy for GS and hence prescribe
the number of GS iterations. In our experience, this works well using only a few iterations. A
standard LINPACK [5] linear band solver is used for the block-tridiagonal system arising within
the MN iteration. We use an analytical Jacobian matrix for the chemistry part. This matrix is sparse
which means that Jacobian evaluations are cheap. Unfortunately, for the block-tridiagonal system the
fill-in of the matrix factorization is almost complete, ruling out using a sparse system solver as is
successfully applied in [15] to box models.

Our test problem of type (4)-(5) is based on the state-of-the-art EMEP MSC-W ozone chemistry
(140 reactions between 66 species [10,11]). In [14] we have used the same chemistry in box model
tests. The experiments reported here extend these to column model tests in a straightforward way
by adding a vertical turbulent diffusion term. Hence K (¢, o) depends on the mixing height which
depends on the time of day. Photolysis rates undergo a discontinuity at sunset and sunrise. This, and
the space-time dependence of K (¢, o) causes large local concentration gradients. A nonuniform space
grid is used which contains 40 points. This grid covers an air column of height oy = 2000 m. We
use the ODE error on this grid in the comparisons. Hence we pay no separate attention to the spatial
accuracy, which is approximately 1% in the error norm introduced below in (16). For the grid with
40 points, the dimension of the banded linear system arising in the MN iteration equals mN,, = 2640
with a bandwidth equal to 2m + 1 = 133.

The time integration over 112 hours starts at sunrise (04.00 hours) on day one (g = 14,400sec.)
and ends at sunset (20.00 hours) on day five (¢t = 417,600sec.). In all integrations, the 112-hour
interval is divided into 56 two-hour intervals, on each of which we restart the integration with the
one-step backward Euler formula using a tenfold smaller stepsize than on the previous step. This
division into 56 subintegrations was also used in [14] and is in accordance with regular changes in
model coefficients and input. Such changes can introduce a discontinuity (as at sunset and sunrise),
motivating the many restarts. Note that, if the current procedures were used in an operator splitting
scheme, then frequent restarts would also be made.

We have carried out two different experiments. The first serves to provide insight in the accuracy
efficiency performance of GS iteration when varying RTol (the relative tolerance parameter for the
variable time stepsize selection) and the number of GS iterations. The second serves to compare GS
iteration with MN iteration. Efficiency is measured by CPU time and accuracy by the number of
correct digits

1 66 56 40 12 56 40 172
SDA = —log | == > |3 Y (solf; —appf)?| /|22 D_(sok)? (16)
=l | =8 k=t =8 k=1

where sol}; denotes a highly accurate approximation to the ODE solution on the grid and app;; the
numerical solution. The times ¢, are restricted to ¢, = 14400 + 7200n with 8 < n < 56, j runs over
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Fig. 1. 1D experiment, CPU sec. versus SDA: (a) GS iteration, (b) GS iteration ( x) versus MN iteration (o).

all species, and k runs over the grid. Hence we sample at the end of each 2 hour interval, but for
the first time at sunset on the first day because we start at sunrise with an arbitrary initial condition.
Thus we assume that we have fully eliminated the initial transients at the first sunset. In (16) we
first compute an [, error in time and over the grid for each species and then average over all species.

Fig. 1(a) gives results of the first experiment which comprises 16 integrations. Each of the four
lines corresponds to a prescribed number of GS iterations (o-2, x-4, +-6, *-8) and connects results
for four values of RTol (107!, 1072, 1073, 10~*). This enables us to compare the use of different
values of RTol and a fixed number of GS iterations with the use of a different number of GS iterations
and a fixed value of RTol. First we notice that decreasing RTol by the chosen factor of 10 also reduces
the error by this same factor, approximately. This indicates that the variable stepsize strategy works
well. Because the four lines almost coincide, we conclude a good strategy is to keep the number of
GS iterations low and to take RTol small, rather than using a large number of iterations and a crude
tolerance. Then we do not need a GS iteration strategy and we do not risk performing a number of
GS iterations larger than the amount required to reach the accuracy of the implicit second-order BDF
method.

Fig. 1(b) gives results of the second experiment. Accuracy is plotted against efficiency for four
integrations using RTol = 107!, 1072 1073 and 107*, both for GS iteration and MN iteration. Here
we have fixed the number of GS iterations to 4. In line with the results of the first experiment, we see
that MN iteration always results in smaller errors (close to the error of the BDF formula), but clearly
at the expense of much higher costs. GS iteration appears to be four to five times more efficient.
This strongly favors GS iteration, certainly so for 3D problems where 1D calculations of the type
considered here need to be carried out at thousands of points in a horizontal grid.

3. The implicit-explicit two-step BDF scheme

In this section, we present the implicit-explicit two-step BDF scheme for (1) and discuss its
stability. We assume that the advection operator (2) is discretized on a cell-centered uniform grid

Oy ={(A,@)): A= (i — DAA, ¢;= (/= DA},
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by means of the mass-conservative, flux-limited, finite difference scheme proposed in [7]. This
scheme is based on the third-order upwind biased method which is equivalent to the « = 1/3 scheme
of van Leer and derived with the aim of producing positive and monotone solutions and little artificial
diffusion. It has been found to be very suitable for our application (see [1,3,7]). For the sake of
brevity, we refer to [7] for the actual formulas and their derivation.

3.1. The implicit-explicit scheme

Let ¢(r) denote the semi-discrete grid function on the cell-centered 3D grid 2y x {2y, where £y
is defined by (6), with components ¢;;(¢), now approximating p at the grid point (A;, ¢;, o). Let

de

— =g(he) + f(5,0) (17)

denote the associated semi-discrete 3D problem. Components f;; are defined by (7) and components
g represent the numerical advection scheme (boundary conditions for the advection operator are
omitted here). Recall that each component c; itself is a vector in R™. Also recall that f(z,c) is only
coupled in {2y and g(t, ¢) only in 2y. Further, since in the advection operator species are not coupled
to one another, we might consider the semi-discrete advection system for each species separately.

Assuming constant stepsizes, for simplicity of presentation, the two-step implicit BDF formula
applied to (17) is

=g = 4o 4 drg(tp, ) + 3T f (tpn ), n 2 L (18)

However, we do not wish to integrate (17) implicitly, and replace (18) by the implicit-explicit
scheme

Jbd

=g = e 4 2rg(t,,0,2¢" = €71 4 3 (tagrs Y. (19)

Likewise, for n = 0, the implicit Euler rule is replaced by the first-order implicit-explicit Euler rule
=+ rg(ty, &) + 7 (1, ). (20)

Integration schemes of this type are well known, [2,12]. For our application (19) is particularly
attractive as the method is only 1D implicit. One step with (19) amounts to computing advection
explicitly at all horizontal grids (2, and vertical diffusion and chemistry implicitly and coupled along
all vertical grids {2y perpendicular to {2y, as discussed in Section 2.

The implicit-explicit approach may be viewed as splitting within a method. The additional error
introduced by “internally splitting” advection from diffusion and chemistry preferably should be of
the same size as the error of the original BDF formula. Substitution of a sufficiently differentiable
solution ¢(t) into (19) yields the local truncation error

3 2
373%c‘(tn) + ~§—7'3g'(t,,, c(tn))adt—zc(t,,) +0(7). (21)
Hence the extrapolation in (19) adds the product of the Jacobian g’ with the second derivative of ¢
to the original local truncation error, but the local error remains O(7?). Thus, to retain the level of
local accuracy, the size of this product should be comparable to the size of the third derivative of the
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solution. Alternatively, we can examine the local temporal accuracy of the implicit-explicit formula
for the PDE itself, by directly applying the integration formula to (1). The local truncation error
expression then becomes

20 D (1) + 37 div(ul p(ta41) = 2p(1,) + p(1,-1) 1) +O(7%)
= 3P (1) + 370 div(up,(£,)) + O(). (22)

We see that, if the third temporal derivative is of the same size as the divergence of the velocity times
the second temporal derivative, then no reduction in local accuracy will result. This observation is of
relevance only when the spatial error is negligibly small. Of course, if the spatial error dominates, as
is surely the case for our experiments, then “internal splitting” will never harm accuracy.

3.2. Linear stability

Treating advection explicitly obviously has a large impact on stability. To examine this, we consider
the linear, constant coefficient system

pr +upy=Kp,, + Mp, (23)

where K is a scalar and M is a matrix representing the chemistry. Note that, for the purpose of
inear stability analysis, it suffices to consider only 1D advection. Conclusions for 2D (and 3D)
idvection can be drawn immediately from the 1D analysis. Assuming that M is similar to its diagonal
eigenvalue matrix, it is sufficient to study the componentwise equations arising in the eigensystem
expansion. Using the same notation, we thus proceed with the scalar equation

o+ upy = Kpyy + pp. (24)

We apply the Fourier method of von Neumann and thus assume that the x-scheme is applied without
limiting and that £2y is uniform. The semi-discrete scheme can then be written as

de,y U Cap =8¢,y x + 8,14~ Crizp

dr 12 AA
. u G2k = AC g 604 — Aci i a ¢
+ sign(u) — (AX) == ' : ‘ =
S1g (H) 12 ) (AA)J,
Cog] =™ 2045+ Crpy
G _ _ e 25
(A()')Z -+ MOk ( )

Fourier analysis leads to the characteristic equation
(1= 2r(A, + ))& = (L +37A4) a + (L + i7A,) =0, (26)
where A, and A, are the advection and diffusion eigenvalues,

3 I u

Ay = VY
2K

A,, = m(COSH,, - l)* (28)

(x/—jsinm(‘i ~cos ) + signlu)(1 - cosm)z) , (27)
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0.8-

0.4

Fig. 2. The stability region S of the explicit two-step scheme (solid line). The dashed, dashdotted and dotted line are the
curves for 7A, for the CFL numbers » = 0.3, 0.45, 0.6, respectively.

with 8, = w,AA, 6, = w,Ac and |6,], |8,] < 7. When the term sign(u) (1 — cos 8,)? is removed
from (27), the advection eigenvalue A, for the classical fourth-order central difference scheme results.
Then A, is purely imaginary. In the upwind case (with the term sign(u) (1 — cos 8,)? in place in
(27)), A, is complex with a negative real part. We first determine the stability region S of the explicit
two-step scheme contained in (19),

N

C 4

te" — 3"+ Rrg(tyn, 2¢" — 7). (29)

This is easily done with the root locus curve computation [6]. If 74, € S for all §,, then we have
von Neumann stability for the explicit advection scheme. In Fig. 2, we have plotted the boundary of
S and the curve 7A,, as a function of 6,, for three trial-and-error values of the Courant, Friedrichs
and Lewy (CFL) number

_ 7l
AN
namely, for v, = 0.3,0.45,0.6. The figure shows that the explicit two-step scheme is stable and

that the maximal CFL number is 0.45, approximately. In higher space dimension the derivation goes
entirely similarly. For example, for

P+ upy+uvpy =0, (31)

we must have 7(A, + Ay) € S for all frequencies. Here A, is the “advection eigenvalue” defined
similarly to A,. A safe upperbound for the stepsize 7 of the explicit advection scheme then is obtained
from

Juf 1ol
7 (M + A¢) < 0.45. (32)

(30)

Vi
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For central differences, the explicit advection scheme will be unstable for all 7 > 0, because the
eigenvalues then lie on the imaginary axis which is not intersected by S. In this case, one should start
from a different implicit method for developing an implicit-explicit variant [2,12].

The CFL condition is comparable to those found in [7] for a number of explicit Runge—Kutta
methods. Also the results reported in [3], where the global spherical advection problem is discussed,
show that (29) combined with the k-scheme works well. For (19), the CFL condition seems certainly
acceptable, since, in practice, stepsizes taken by this method will be determined mainly by the stiff
chemistry and vertical diffusion and hence will generally be smaller than the largest permissible
advection stepsize. Of course, the explicit advection approach should not reduce the excellent stability
of the implicit BDF method for the stiff chemistry and vertical diffusion computation. The question
is thus, will (19) be stable for any stepsize 7, for which the explicit advection scheme is stable? This
implies that the root condition for (26) must be satisfied for all possible values of 7,A, and 1 — %{
where ¢ = 7,(A, + ). For { < O this holds and is a consequence of the theorem below. We have
¢ < 0 if the chemistry eigenvalue u is negative. The theorem does not hold for arbitrary complex ¢
with Re(Z) < 0. However this seems to be a redundant observation for atmospheric chemical kinetics
problems since these seem to give rise to negative u.

Theorem 1. Let the complex number z € S. The roots of
(1-3) e’ = (+3g)a+(3+352)=0,
then lie in the unit disk for any { < 0.

Proof. Let a; and a, be the roots for £ = 0. As z € §, we have |a;| < 1, j =1,2. Now write the
characteristic equation as

(-2)(-2)-

and consider the stability domain for ¢, for any fixed z € S. On the boundary of this domain we have
a root |a| = 1, which implies that |a;/a| < 1. It then follows from (33) that this boundary cannot
intersect the negative axis and hence the entire negative J-axis must belong to the stability domain
since we have stability for {/ — —oo. [J

3.3. The exact CFL condition

For multistep implicit-explicit methods, necessary and sufficient conditions for von Neumann
stability can be difficult to determine. A semi-analytical approach which gives sufficient conditions
for a variety of methods has been proposed in [16] for schemes based on second or fourth-order
central differences and in [17] for schemes using the third-order upwind discretization for advection.
Our approach above is standard and also semi-analytical. The approximation 0.45 for the maximal
CFL number was found by plotting the boundary of the stability region S and three curves of 7A,.
By means of Theorem 1, we then established that the critical stepsize for von Neumann stability in

the implicit-explicit case is determined by the critical stepsize for the explicit case and hence by the
maximal CFL number.
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Although the approximation 0.45 is quite accurate, we will now present the derivation of the
true maximal CFL number, denoted below by .. This derivation involves complicated algebraic
expressions so that the final step of the proof is solved with help of the computer algebra package
MAPLE.

Theorem 2. 7o ten decimal digits accuracy, the maximal CFL number is given by

Vax = 0.4617485908. (34)

Proof. Set v =v,, § =6, and A = A,. By definition

Vmax = max[v:|ay|, |ay| < 1 for |0] < 7], (35)
where a, a, are the zeros of the characteristic polynomial

pla) =ama® +aa+ap (36)
with coefficients

a=1, a=— (3 +3r4), a = § + 37A. 37
Let

pra) =8, + G+ doa’, pi(a) =&a, — a1ay + (Gay — Godp) . (38)
According to [9, Theorem 6.1], the zeroes «,, a; lie in the unit disk if and only if

() [p* ()] > [p(0)], and (i) |ao| < 1, (39)

where «q is the zero of p,.
Condition (i) is equivalent to

laol? =5 — (g - D+ Hl(g= D+ (1 =) 4 -2 <1, (40)

where g = cos(6). Because |ap|? is an increasing parabola in v, with value 1/9 at v = 0, it follows
that (40) holds for 0 < v < v, if this inequality holds for »,. Let us substitute the trial value v, = 1.
Then (40) holds if and only if

2’ —6g° —3g—2<0. (41]

It is readily shown that this is the case for all |g| < 1
Condition (i1) is equivalent to

lay — @ ap] < |1 — @oap] =1 — |ao)® (42)
Write 7A = Re +i1Im. Then (42) is equivalent to

3Re* +3Im* —2Re’ +6 Re* Im* —2Im’* Re ~5Re? +4 Re < 0. (43)
From the expressions

Re=—lv(g—1)%,  Im’=12(1 - @)(4—q)?, (44)

a””!?*" l(j‘ ‘‘‘‘ S
!\ Ty [T P
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it follows that (43) holds for ¢ = 1, so that in the remainder we may assume —1 < ¢ < 1.
Substitution of the expressions for Re and Im into (43) yields, after a lengthy computation, the
equivalent condition

» v 2 v 3
Q1) = Qu(@) + ()5 + 0:(9) (3) +0x(9) (.3.) <o, 5
where
Qolg) = -4,
0:(q) ==5(g—1)?,
0:(q) = (g~ 1)(8¢° = 10g — 34),
01(q) = 484" — 1204° — 333¢° + 510g + 867. (46)

Because Q:(q) > 0, Q(v,q) — =*oc for v — =£oo. Further, Qo(gq) = —4 and Q,(g) < O, so
that Q(», ¢) has a minimum for » > 0 and a maximum for » < 0. Hence, the cubic polynomial
Q (v, ¢) has one positive zero and the value of this zero, minimized with respect to g over the interval
—1 € g < 1, is just the maximal CFL number (35), provided this zero is less than or equal to one
(cf. condition (1) of (39)).

For computing the positive zero of Q(»,q) and for the minimization with respect to ¢, the
computer algebra package MAPLE was used. The resulting closed expression for vy, 1s very long
and complicated; for the sake of brevity, we give the number v, to 10 decimal digits accuracy. 0O

4. The performance for 3D applications

In this section, we present results of the implicit~explicit MOL scheme for a 3D test problem. We
also discuss the speedup obtained by vectorization and parallelization (on a Cray C98/4256).

4.1. The 3D test problem

The 3D test problem (1)-(3) is based on an extension of the 1D column model to a 3D model on
the sphere. The cell-centered horizontal grid covers an area of 7.5° square, arbitrarily chosen near the
equator. This corresponds to an 850 km square, approximately. We take a uniform longitude-latitude
grid in the horizontal directions,

{y= {(AHQSj):/\D: -97.5°, ¢0 =-7.5°,
A=i=D4, ¢ =G -Asij=1,...,N}

with cell width 4 =7.5°/N. In the vertical direction, the domain definition and the discretization are
the same as in the column model described in Section 2.5. Note that the emission input, deposition,
etc. are also defined in the same way as in this column model. Thus we take the “rural case”
emission input on the whole domain, except for a square inside (see Fig. 3) where we switch to
the “urban case” emission input (cf. [14]) which is approximately a factor 10 larger. This serves to
create significantly larger (also by an order of magnitude of 10) concentrations at the urban area,
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Fig. 3. The horizontal domain with the windfield. In the gray square we impose “urban” emissions, in the rest of the
domain “rural” emissions. The diagonal line gives the points where the solution is compared to the 1D solution along the
characteristic.

which then downwind gradually must be reduced to the lower rural levels. The discretization of the
horizontal transport term (2) is based on the flux-limited finite difference scheme referenced at the
beginning of Section 3. We use zero Neumann boundary conditions. A divergence-free windfield is
imposed with such a direction and strength that the area is crossed diagonally in four days

e \/_ . .
A, ) = >4 345600 - (cos Bcos ¢ + sin Bsingcos A), (48)
T \/—
__T«a e . 4
v(A, @) >4 345600 sin Bsin A, (49)

where 8 = —3ar/4 is the angle with the equator. This corresponds to a wind speed of approximately
3.6 m/sec.

We take N = 32,64,128 and we start our computations at t, = 14400 + 7200 - 8. As initial
solution, we take at all grid points the vertical 1D solution of the “rural case” at that time. In our
tests, different resolutions were chosen to show the performance of the numerical algorithms in 3D
models of regional to urban scale. Notice that the chosen values for N correspond to grid sizes in the
horizontal domain of approximately 26.6, 13.3 and 6.6 km.

Let us elaborate on the CFL restriction (32) for this test problem. For this purpose, we first
consider the corner point (—90°,0°), where u =v = —7a/(24 - 345600). Because ¢ =0°, cos¢ =1
in (2) so that (32) becomes 7|u|/(ad) < 0.225. Inserting 4 = 7.5°/N = 27 /(48N) radians, this
yields

24 - 345600 2430.0 sec., for N =32,
7<0225- T~ 1215.0 sec., for N =64, (50)
T 24N
607.5 sec., for N =128.
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Because the angles ¢, A do not vary much over the spatial domain, these inequalities are approximately
true everywhere. The linear stability analysis of Section 3.2 predicts that if (50) is satisfied, then the
implicit-explicit BDF scheme will be stable. In the actual application, variable stepsizes are used.
Consequently, if violation of (50) would result in instability, then the local error control must detect
its onset and reduce the stepsize to a level which ensures stability.

4.2. Vectorization and parallelization

For N = 128, the dimension of the complete semi-discrete ODE system is 129 - 129 - 40 - 66 ~

44 - 10°, Obviously, speed is then of utmost importance and because we use a computer with four
vector processors (Cray C98/4256), a natural question is how to obtain good parallel vector speed.
The integration scheme (19) has been implemented in a modular way. Separate routines perform
the flux computations and the explicit advection part. A straightforward implementation of these is
automatically optimized by the compiler both with respect to parallelization and to vectorization,
resulting for these parts in a good performance. The subroutines are analogous to the ones used
n [3]. The core of the implicit solver for the chemical transformations and the vertical turbulent
diffusion is the Gauss-Seidel method (15). This method might be applied for all horizontal grid
points but the computations are independent. Therefore we implemented loops over all horizontal
grid points inside the items 2(a)-2(d) of (15). With this implementation the Gauss-Seidel process
vectorizes very well. To obtain a good performance on a shared memory system with only a few
processors, item 2(a) can be parallelized over the vertical grid, while in items 2(b) and 2(c) the
loop over the horizontal grid may be distributed over the processors.

4.3. Test results

In Fig. 4, the horizontal distribution of the O; concentration in the first vertical layer is plotted.
It shows that the transitions between the rural and the urban area are very steep, while downwind a
strong dependence of the ozone level on the higher urban emission exists. Plots on the coarse grid
(N =32) show a comparable behavior. To assess accuracy, we compare the numerical solution with
the true 1D solution obtained along the characteristic from (—90°,0°) to (—97.5°, —=7.5°). The error
is measured by

/2 o 1/2
ERR}’~{Z(SOI — app};) } /[max (I,Z(solzj)z)} ) (51)
k=1

1 66
SDA" = — log,, (%ZERR;?), (52)
J=1
1 N 66
SDA =—log, | + 66225}2}2" (53)

n=l j=1

computed at all grid points through which the characteristic travels. Here, sol}; denotes a highly
accurate approximation to the semi-discrete 1D solution along the characteristic at time
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Fig. 4. The ozone concentration at sunset of each day on the horizontal domain (N = 64) in the first vertical layer.
T,=to+n(4-24-3600)/N forn=1,...,N,

which represents the true solution of the 3D problem at the vertical column at the grid point
(N —n,N —n) at that time. Likewise, app;; denotes the numerical vertical column solution at
this grid point at that time. (See Fig. 3, where we indicated 17 of those points with a o.) Because
we use variable stepsizes in time, linear interpolation in time is used to get an approximation at
T,.

We used four GS iterations and made runs for two different time tolerances, viz., RTol = 0.1 and
RTol =0.01. As in the 1D case, after every two hours, the integration is restarted with the backward
Euler formula and a tenfold smaller stepsize. At the 65 x 65 x 40 grid, for RTol = 0.1 the maximum
and average stepsize taken are, respectively, 2400 sec. and 307 sec. For RTol = 0.01 these values are
1118 sec. and 144. This amounts to a total of 1125 integration steps for RTol = 0.1 and 2407 for
RTol = 0.01.

Table 1 shows that on the coarse grid, N = 32, and to a lesser extent also for N = 64, RTol = 0.01
does not result in a more accurate solution. This obviously indicates that the spatial errors dominate.
To illustrate this we have plotted in Fig. 5 the SDA" values in all grid points through which the
characteristic travels. Note that in the first quarter no spatial errors are present since in the right upper
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Table |
Performance on 1 CPU
129 x 129 x 40 65 x 65 x 40 33 x 33 x 40
RTol SDA CPUs Mflop SDA CPUs Mflop SDA CPUs Mflop
0.01 1.71 4.45¢4 570 1.54 1.20e4 550 1.24 331e3 500
0.1 1.39 2.43e4 570 1.44 6.06e3 550 1.24 1.64e3 500
Table 2
Performance on 1 CPU for GS process and flux computations
129 x 129 x 40 65 x 65 x 40 33 x33x40
CPUs Mflop CPUs Mflop CPUs Mflop
RTol=0.01 GS 2.49¢4 610 6.50e3 600 1.67e3 590
Flux, 7.00e3 510 1.91e3 500 6.53e2 360
Fluxy 6.58e3 540 1.78e3 530 4.80e2 490
RTol=0.1 GS 1.36e4 610 3.29¢3 590 8.27e2 590
Flux, 3.83e3 510 9.66e2 500 3.24e2 360
Fluxy 3.60e3 540 8.99¢2 530 2.38e2 490
129x129x40 65x65x40 33x33x40
4 4 4
<3 <3 < afl
Sl S 3o
o 2 ®2 h 2
1 1 1
0 0 0
1 33 65 97 129 1 17 33 49 65 1 9 17 25 33

=>nN -=>n >N

Fig. 5. The errors at the grid points through which the characteristic travels, shown for the three different space grids and
the two time tolerances RTol = 0.1 (dashdotted) and RTol = 0.01 (solid).

square of the domain as the solution is constant over the horizontal grid. It is clear that the steep
gradients in the rural-urban transition result in dips in the accuracy. On the coarse grids, after the
first transition, the error is no longer influenced by the time tolerance and the spatial errors start to
dominate. On the finest grid, N = 128, the accuracy for RTol = 0.1 is even lower than on the grid with
N = 64. In Fig. 5, it can be seen that the drop in accuracy occurs after the urban area. The reason is
that we did not impose the CFL restriction on the time stepsize assuming that the local error control
would detect instabilities in a timely way and reduce the stepsize to a stable level. This obviously did
not happen during the nights when two time steps were taken of approximately 900 sec. resulting in
a drop of accuracy caused by instabilities in the area just SW of the urban square. A rerun starting
at 20 h on day 2 with the CFL restriction imposed confirmed this. Note also that, for the stricter time
tolerance RTol = 0.01, this accuracy drop caused by instabilities does not occur.
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Table 3

ATExpert data of the parallel fraction (Par. Fr.) and the predictions of the performance on a dedicated machine for the
whole program, the GS process and the flux computations. The number of processors is 4, 8 and 16, and the bracketed
numbers give the speedup predicted by Amdahl’s law

Par. Fr. 4 8 16
Overall 97% 34 (3.7) 5.4 (6.6) 7.7 (11.0)
GS 100% 3.4 (4.0) 5.4 (8.0) 7.8 (16.0)
Flux, 96% 3.5 (3.6) 6.3 (6.3) 8.9 (10.0)
Fluxy 96% 3.5 (3.6) 6.1 (6.3) 8.7 (10.0)

The space discretization scheme in the advection part will be first-order at the rapid transition points
due to the limiting procedure. Fig. 5 confirms this. Beyond the first transition, the errors plotted in
Fig. 5 are close to 2% (N =128), 4% (N = 64), and 6% (N =33). These errors may seem rather
large but are believed to be quite acceptable for modeling purposes.

The vectorization of the code is very satisfying. To interpret the figures in Table 1 and 2 bear in
mind that one CPU of a C90 has a clock period of 4.2ns and a double vector pipe. This gives a
theoretical peak performance on 1 processor of 476 Mflop/s and 952 when chaining an add and a
multiply. As was already shown in [3], the explicit part of the solver, which consists mainly of flux
computations, has a performance of approximately 0.5 Gflop/s. The implicit part of the solver is
dominated by the Gauss-Seidel process which reaches even 0.6 Gflop/s. To measure the Megaflop
rate and the CPU time of a routine we used the Cray utility Perftrace [4], that gives the hardware
performance by program unit.

Parallelization is done using the Cray Autotasking system, which automatically distributes loop
iterations to multiple processors, optionally guided by user directives. For Autotasking, the Cray tool
ATExpert [4] can be used to predict speedups for a number of processors on a dedicated system
from data collected from a run on a nondedicated system. Table 3 shows the information obtained by
ATExpert on the 65 x 65 x 40 grid. The parallel fraction gives an indication of the optimal speedup
according to Amdahl’s law S = 1/(fs + fp/N), where fs and fp are the sequential and parallel
fraction, respectively, and N the number of processors. For example, a parallel fraction of 97% gives
a speedup of 3.7 on a 4-processor machine and 11.0 on 16 processors. The figures in the table indicat
that the actual speedup would be much lower for the GS process, especially for 16 processors, wher
the optimal speedup of 16 is predicted to reduce to an actual speedup of only 7.8. There are two
main reasons for this. The first is load imbalance. For example, the computation of the production
and loss terms in the Gauss-Seidel process is parallelized over the vertical grid (40 grid points) and
gives a satisfactory speedup for 8 processors, but of course not for 16 processors. The second is the
system time needed to invoke and terminate a parallel region (3600 clock periods on a C90). If the
parallel sections do not contain enough work, most of the work will be done by the master task and a
few slaves. On a 65 x 65 grid, the actual speedup does not approach the optimal because the amount
of work needed to do a part of the decomposition or the backsolve is of the order of only a few
operations per loop iteration and because the loop over the horizontal grid needs to be parallelized as
well as vectorized, resulting in a relatively small number of points per processor. On the 129 x 129,
horizontal grid this overhead is less important and indeed inspection of a few loops showed that the
speedup is significantly higher than for the coarser grid.
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5. Final remarks

Air pollution codes usually employ operator splitting. Following the method of lines, in this paper
we discussed numerical integration based on the variable stepsize, second-order BDF formula. This
choice of integration formula is natural in view of its excellent performance for stiff ODE problems
from chemical kinetics in the low accuracy range. However, since we deal with a huge system of
ODEs obtained after the spatial discretization of the advection and diffusion terms, it would be very
cumbersome to apply the BDF formula in its fully implicit form. We therefore have modified it
to an implicit-explicit form which treats advection explicitly and vertical turbulent diffusion and
chemistry implicitly. As outlined in Section 3, this implicit-explicit modification is appropriate for
our application as regards local accuracy and stability.

The implicit-explicit modification means that the main processes of advection, chemical trans-
formation and vertical turbulent diffusion are treated according to their general physical time con-
stants. Advection is rather slow and can thus be treated explicitly. Certain chemical species and
associated vertical turbulent diffusions have small time constants of the same magnitude. The er-
ror introduced in treating these two latter processes decoupled, as in operator splitting methods,
is therefore difficult to estimate and can be avoided by solving them coupled and by an implicit
approach.

However, the remaining 1D solution of the vertical turbulent diffusion and chemistry is a huge task,
since this has to be done at every point from the horizontal grid. For this task we have developed the
Gauss-Seidel technique (15), which for the 1D example problem from Section 2.4 has been shown
to be 4 to 5 times more efficient than the usual modified Newton iteration supplied with a linear
banded solver. A second advantage of the Gauss-Seidel technique, compared to modified Newton,
is its low memory requirement. No Jacobian matrices need to be stored which makes it possible
to exploit grid vectorization in core memory for the very large problem sizes shown here. In view
of the CPU times required, it is obvious that good vectorization and parallelization is a practical
necessity. The flop rates of 0.5 Gflop/s, about half the peak performance, that we measured for the
3D test problem, illustrate that the vectorization of our implementation on the C90 is very satisfying.
The algorithms used are naturally parallel. Without much effort, we have made the parallel fraction
of the total program about 97%. On the 65 x 65 horizontal grid the actual speedup obtained by
parallelization on 4 processors is 3.4 which is quite acceptable, but for a larger number of processors,
say 16, the amount of work in some of the parallelized loops is too small to reach the optimal
speedup of 11.0.

Our 3D test problem is realistic as regards the chemistry scheme. We used the EMEP MSC-W
ozone chemistry which is state-of-the-art in the field of regional air pollution modeling. Atmo-
spheric and meteorological conditions, like the vertical turbulent diffusion, the windfield, humidity
and temperature, have been prescribed in analytic form and hence we have not simulated a genuine
atmospheric pollution problem in all respects. However, numerically the example problem provides
a challenging test. The tenfold higher urban emissions in part of the computational modeling do-
main give rise to sharp transition regions which are difficult for advection schemes. This, combined
with the realistic chemistry and the vertical turbulent diffusion modeling, makes it a challenging 3D
test problem well suited for benchmarking numerical codes, both with respect to the discretization

aspects of accuracy and stability and the high performance computing aspects of vectorization and
parallelization.
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